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ABSTRACT
Interest in forensic analysis of RAM memory recently grew. Said

memory contains the latest accessed data which in addition often

is unencrypted. As data like variable values in Java programs may

be of interest for forensic experts, the volatile memory firstly has

to be persisted by taking snapshots. In this work a memory dump

is created on a Linux VM while a custom Java program is running.

Further, approaches to acquire memory dumps remotely from a

second VM on the same hypervisor are presented. Methods used

for local memory acquisition are the debugger GDB and a system’s

ability to create crash dumps. The remote dumping approaches

failed as no further processable dump files could be generated.

In the second step, the reconstruction of Java objects is done on

the basis of a previously generated core dump file. First, the dump

file is converted to the hprof binary file format which contains the

objects in the heap. Afterwards, the actual variable values could be

extracted with Oracle’s JHAT heap analyzing tool.

1 INTRODUCTION
Digital forensics is defined as the preservation, collection, identifi-

cation, examination, and analysis of evidence derived from digital

sources [13].

One traditional sub field of digital forensics is storage forensics.

It focuses on the recovery and analysis of file fragments or whole

files from persistent storage media. Over the past decade however,

interest in the field of memory forensics or more specifically the

analysis of volatile memory grew [1]. The examination of a digital

device’s RAM is interesting, as it contains information connected

to recent activity — for example active processes, open network

connections, and fragments of program data [1]. Latter seems at-

tractive, as useful content (e.g. actual chat messages and not only

metadata) could be retrieved from applications like Java programs.

This information can be important in criminal investigations or

the assessment of breaches. In the first scenario, the focus is on the

extraction of evidence for legal proceedings. In breach assessment,

memory analysis could reveal traces which could yield details about

the intruder.

Main memory data is considered volatile, meaning that the data

is lost once the power is cut. One way to persist the data is by

taking snapshots of the target device’s memory. These so-called

core dumps allow further analysis even after cord cutting.

As malware has the possibility to hide itself from the system once

it gained kernel-level privileges [3], digital forensic experts aim

for higher level memory access. One option is the usage of virtual

machines (VMs) — the hypervisor has full access to the memory of

its guest systems. In this paper, the method of acquiring memory

dumps (of the target VM) from a monitoring VM on the same

hypervisor is referred to as remote memory acquisition. Remote

hence refers to the fact that the acquisition is performed by the

monitoring VM and the target VM is unaffected from the acquisition

process.

The next step after the acquisition of a memory dump is the

analysis of the gained data. In this paper I will try to reconstruct

Java objects from memory dumps. More specifically, I try to recover

the names and assigned values of variables defined in the class

scope. If the recovery is successful, forensic experts can use the

approach to get insight into the state of an application.

Two main goals are set: taking a memory snapshots from a re-

mote VM and the reconstruction of Java objects from this snapshot.

During reconstruction, also any possible impact from data types or

modifiers should be assessed.

Chapter 2 starts with theoretical problems that arise when ob-

taining memory dumps and presents a taxonomy for acquisition

techniques. In section 3 the experimental setup is explained and

approaches for the acquisition of RAM images are presented and

conducted. The next chapter 4 covers the actual reconstruction of

Java objects. Afterwards, memory analysis approaches found in

related work are presented in section 5. Chapter 6 compares these

approaches to the approach presented in this paper. Finally, section

7 summarizes this paper and shows restrictions as well as further

research questions.

2 BACKGROUND
This chapter will introduce basic problems in memory forensics

(2.1) and present a taxonomy for persisting techniques (2.2).

2.1 Memory Forensics - State of the Art
Andrew Case and Golden G. Richard III present in their paper

’Memory Forensics — The path forward’ current issues for memory

acquisition and analysis [1].

According to the authors, the main issues for memory acqui-

sition are page smearing, non-resident pages and dependence on

operating system (OS) versions.

Page smearing is the inconsistency between page tables and

the corresponding pages of memory. It occurs when the memory

changes in the period between acquiring the tables and acquiring

the data. The only remedy incorporated by acquisition tools is the

attempt to quickly generate the dumps.

Non-resident pages describes the usage of swap-files or similar

concepts by the OS. These allow to provide more RAM than physi-

cally available by storing pages to other places — often the local file

system. Memory acquisition tools are challenged with these (often

large) files, as long acquisition times increase page smearing.

Dependency on OS versions refers to the various operating sys-

tems available. On Linux, memory acquisition faces the problem

of different distributions and versions. Each subversion of a kernel
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needs a particularly compiled memory acquisition driver. The broad

spectrum of versions and the possibility to compile custom kernels

make it hard to create a central kernel module database.

While Windows only has few different (kernel) versions, Mi-

crosoft recently started to make major changes to their OS. One

modification addressed the layout of the hibernation file. This file

is created when a system is put to stand-by mode and contains

the current RAM content in order to allow a quicker reboot. In

the past, these files simply were used by forensic experts. Further,

Microsoft started to incorporate mechanisms preventing malware

from affecting critical components. This also influences the work

of digital forensics as they must access exactly these components.

Besides the acquisition difficulties, the authors also named issues

on the specific applications running on a system. There are only few

pre-built tools to extract information from common applications

like notepad or some chat-clients. All further analysis of applica-

tions like browsers, web servers and databases must be done by

manual, unstructured analysis.

Unstructured analysis hereby refers to tools like strings, grep, and

hex editors which are used on raw byte streams [1]. In comparison,

structured analysis relies on information about underlying data

structures and allows a more targeted analysis by accessing known

fields.

2.2 Taxonomy of Memory Acquisition
Techniques

The first step in the analysis of running Java programs is to persist

the target’s main memory. Latzo et al. described various techniques

in their ’Taxonomy and Survey of Forensic Memory Acquisition

Techniques’ [3]. Techniques are differentiated by the following

three dimensions.

• Access Hierarchy Level describes the level of the highest

privileged code executed by the technique upon acquiring

the memory. Levels range from the least privileged User Level
over the Kernel Level and the Hypervisor Level to the highest

privileged Asynchronous Device Level.
• Pre- or Post-Incident Deployment describes the time of

installing the acquisition tool compared to the time of the in-

cident. Post-Incident Deployment often reduces the integrity

as installations alter the memory.

• Non-Terminating orTerminatingAcquisition describes

whether the target program is terminated during the acqui-

sition.

Tools utilized in this work will also be classified by these dimen-

sions.

3 SETUP, GENERATION AND PROCESSING
OF CORE DUMPS

The following section describes firstly the used tools for memory

acquisition. After a description of the VM setup, the Java program

from which I want to reconstruct objects is presented. Finally, dif-

ferent approaches for core dump generation are assessed and per-

formed.

3.1 Used Memory Acquisition Approaches
In this paper, approaches for memory acquisition on the Kernel
Level or the Hypervisor Level are considered. Particularly the tools

LibVMI and GDB (which are categorized as pre-incident and non-
terminating) are used. Another employed approach is the lever-

aging of system crash dumps — a terminating method. Usage of

crash dumps may be considered pre-incident as the system already

includes this feature. Having said that, some systems may be config-

ured to disable crash dumps. In this case, the approach is considered

post-incident as the system needs to be reconfigured before memory

acquisition.

One straight-forward way to access memory in a test setup is to

use VMs. The host has full access to the guest system and hence also

can dump the memory. However, there is a semantic gap between

the introspecting VM and the target VM. Latzo et al. [3] explain this

gap as follows: "In contrast to acquisition software running within

the kernel, tools that operate on the Hypervisor Level generally do

not have any contextual information on how to interpret a guest

process’s address space". The gap therefore refers to the difference

between the binary representation and the meaning of the data to

the OS.

In order to overcome this gap, the Hypervisor Level tool LibVMI
is used. It performs low-level operations like mapping kernel sym-

bols to virtual addresses and allows higher-level Virtual Machine

Introspection (VMI) applications to be built [5].

Another approach to generate memory dumps is the use of de-

buggers. One wide-spread debugger is the GNU Project Debugger
(GDB) which allows to generate core dumps without terminating

the target program. Further, it is able to operate as a pre- and

post-incident acquisition tool: either GDB starts the debuggee or it

attaches to an already running process. In this paper, I will use the

post-incident variant and attach to a running process.

3.2 Setup of VMs
The practical experiments were conducted on Linux machines. More

specific, the basic setup consists of two VMs, one introspecting VM

running Debian 8 (512MB of RAM) and one target VM running

Ubuntu 16.04 (256 MB of RAM). Virtualization of the VMs is realized

with the hypervisor Xen. Both machines are linked with LibVMI.
This utility allows the introspecting VM to access the memory of

the target VM with the high-level VMI framework Volatility 2.5.

Reconstruction should be performed on a Java program running

on the target machine. The underlying platform is OpenJDK version

1.8.0_222.

As none of the profiles pre-delivered with Volatiltiy matched the

Ubuntu version of the target VM, a custom profile had to be created

by following the instructions in section 3.4.1. Assuming a profile

created this way is named customProfile, it is passed to Volatility
with the parameter −−profile customProfile.

3.3 Analyzed Java Program
As the aim of this paper is the reconstruction of Java objects, a

suitable program with known structure is implemented and then

run on the target VM. Aspects considered during reconstruction

are each classes variable names and the assigned values. This work

focuses on variables defined in the member variable scope.
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Figure 1: Definition of scopes inside a Java class

3.3.1 Reminder Variable Scope. As the scope of a variable influ-

ences the ability to reconstruct it, a short definition is presented

in figure 1 which is based on the Java tutorial [11]. Three scopes

are depicted: member variable scope, method parameter scope,

and local variable scope , but only the member variable scope is

examined in this work.

3.3.2 Structure of the Program. The primary objects to be re-

constructed are of class TestObject. All variables are defined in the

member variable scope. As different data types may yield different

results, the following variants are investigated.

• Access Level Modifiers: public, private, protected

• Primitive Data Types: string, int, char, boolean, byte, dou-

ble

• Keyword final
• Arrays: one- & multidimensional arrays

• Objects: other non-primitive instances

The only defined method is the constructor which assigns actual

values to all variables. Instantiation is conducted in a Client class.

The Client class only creates two arrays: a String array and a two-

dimensional int array and passes these as parameters to the created

TestObject.
In order to recognize values found in the memory, each vari-

able is filled with an individual value. Figure 2 depicts the relation

between both classes. As the example program would terminate

directly after the variable initialization, it would be impossible to

generate a memory snapshot at the right moment. To allow snap-

shot generation just after the initialization, the program waits for

an arbitrary console input before finishing execution.

3.4 Generation of Core Dumps
In this section, different ways to acquire core dumps are presented.

First, the possibility to generate dumps remotely is assessed. As this

approach fails, two ways to generate local dumps are presented.

3.4.1 Remote Dump Generation with Volatility. As the VMs were

already set up with LibVMI, the first attempt to generate a core dump

is with the framework Volatility. It is a cross-platform, modular,

and extensible framework for volatile memory forensics. Volatil-
ity allows the extraction of information about processes, process

memory, networking status, and much more from either memory

dumps or a LibVMI connection [12].

The framework uses so-called profiles to locate and parse critical

data from core dumps. A profile is basically a zip-file containing

information on the kernel’s data structures and debug symbols

[12]. As mentioned earlier, there exist many variations of kernels

Figure 2: Variable values of the instantiated program

incorporated in Linux operating systems. Therefore, it may be

necessary to manually build such a profile for the target system.

The creation consists of the following three
1

steps [7].

(1) Create the file module.dwarf by executing the tool dwarf-
dump shipped with Volatility on the target system. DWARF
files help to build a logical connection between an output

binary and the actual source code

(2) Locate the System.map file which commonly is located in the

targets /boot-directory. It contains the name and addresses

of a kernel’s static data structures

(3) Zip both files and move the resulting archive in the Volatility
installation folder

Actual acquisition on Linux systems is then done in three steps:

(1) Mount the VMI file system of the target on the monitor VM

vmi f s name targetVM / mnt

(2) Use Volatility to find the PID of the Java process

v o l a t i l i t y − f / mnt /mem l i n u x _ p s l i s t −− p r o f i l e

↩→ c u s t o m P r o f i l e

(3) Dump the memory range of the process to the disk

v o l a t i l i t y − f / mnt /mem linux_dump_map −p PID −−dump

↩→ −d i r Dumps −− p r o f i l e c u s t o m P r o f i l e

The result of this operation is the data of all memory segments

connected to the given process in .vma files. Additional information

on these files could be extracted with the command linux_dump_-
map. An extract from this command can be found in figure 3.

1
Detailed instructions can be found on the Volatiltiy wiki [12]

Start End Flags Path

7FFECDDDF000 7FFECDDE1000 r-x [vdso]

7FFECDD81000 7FFECDDA2000 rw- [stack]

194E000 196F000 rw- [heap]

7F25484FC000 7F254866E000 r-x /usr/lib/...

.

.

.
.
.
.

.

.

.
.
.
.

Figure 3: Information given by linux_dump_map
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As there isn’t any Volatility plugin designed to reconstruct Java

objects, analysis has to be done without Volatility. The tools used

to further process the core dump accept one coherent core file. A

core file is basically an ELF file with a specific type flag
2

which

contains memory segments. Therefore, attempts to combine the

segments generated by linux_dump_map into one combined file

were conducted:

• MakeELF 3
is a Python library to parse, modify and create ELF

binaries [6]. At first glance this tool seemed very promising,

but unluckily it doesn’t support the ELFCLASS64 and hence

also the used 64 bit VMs.

• PyELFtools also is a Python library with comparable func-

tionality. However, the intended use of this toolset is rather

the analysis and parsing of already existing ELF files than

the creation from scratch.

As the artificial composing of the ELF-file with the named tools

failed, a different approach of remote memory acquisition was

attempted.

3.4.2 Remote Dump Generation with VMIDBG & generate-core-
file. The approach uses the tool VMIDBG 4

. It also builds on top of

LibVMI and allows debuggers to remotely access the VMs memory.

The fundamental idea is to use GDB’s remote debugging function-

ality. VMIDBG creates a stub on the monitoring VM and forwards

calls to LibVMI which in turn passes them to the target system. In

order to access information on the target, one has to start GDB on

the monitoring VM and then use the command target extended-
remote localhost:2159.

In theory, the subsequent step would be to use the GDB utility

generate-core-file to create a core dump. Unfortunately, this

solution doesn’t work as the generated files contain no data and

GDB shows the error message Command not implemented for this
target.

Another applicable GDB command is dump memory. It allows

dumping specific memory segments. This aproach isn’t useful either

as the aim is to generate one coherent core dump file. Additionally,

the resulting files only contain zeroes.

As the approaches to acquire memory from remote machines

weren’t successful, I decided to generate a core dump locally on the

target machine.

3.4.3 Local Dump Generation with GDB. The first tool used was

the already mentioned debugger GDB. It attaches to an already run-

ning process and then allows to dump the respective memory with

the command generate-core-file. The resulting file is pretty

large (approx. 2 GB), but suitable for further processing as shown

in section 4.1. Acquisitions performed by this method require GDB
installed and are non-terminating.

3.4.4 Local Generation of Crash Dumps. Another method to

locally generate a memory dump is to leverage the system’s ability

to create crash-dumps. All relevant desktop OS today include this

feature [3]. When a program crashes and the size limit for core-files

is set right (e.g. via ulimit), a core dump will be created.

2
https://www.sco.com/developers/gabi/2000-07-17/ch4.eheader.html

3
https://github.com/v3l0c1r4pt0r/makeelf

4
https://github.com/Zentific/vmidbg

(1) Allow all processes to create core dumps with unlimited size

u l i m i t −Sc u n l i m i t e d

(2) Start the target Java program

(3) Terminate the Java process with the kill -4 command

This approach presumes the target application isn’t running be-

fore the size limit is set right — either by the system’s configuration

or by ulimit. Either way, the generated files are rather small (around

25 MB) and are applicable for further processing.

3.4.5 Comparison. Both local approaches yield usable core dumps.

However, the file sizes differ significantly. When comparing the

resulting ELF-files, the size difference could be explained by the

number of sections included. The file generated by GDB contains

over 100 section headers while the file resulted by triggering a

crash dump contains none. Anyways, the information in the sec-

tions doesn’t affect the ability of further processing. As in this work

the core dump generation is artificial and the size parameter easily

can be set before starting the program, I decided to use the ulimit
approach as the resulting files are small and therefore easier to

process.

4 RECONSTRUCTION OF JAVA OBJECTS
In this chapter the previously generated core dumps are trans-

formed into the hprof file format. Afterwards, different tools for

analyzing the transformed files are presented. Finally, a script is

developed to automate the object reconstruction.

4.1 Further Processing of Core Dumps
This subsection shortly describes the hprof file format. Based on

this format, analysis is done with graphical tools in a first step and

subsequently with a Java tool called JHAT.

4.1.1 Conversion of Acquired Dumps. As only the Java heap of

a memory dump is interesting for object reconstruction, the first

step is to extract the heap from the core dump file. This is possible,

as the heap is only a friction of a core dump (see memory sections

in figure 3). The tool used for this conversion is JMAP 5
, a utility

shipped with the JDK which prints heap memory details for core

files. Oracle’s documentation states that this tool is unsupported

and experimental which reflected on pointless error messages like

’Can’t attach to core file’. But after installing the package OpenJDK-
debug the tool worked fine.

The result of the conversion is a file in the hprof binary format. It

contains allocated objects in the heap and its intended purpose is to

track down and isolate performance problems involving memory

usage [8]. However, the actual data is also contained in the file

which allows object reconstruction.

4.1.2 Graphical Tools - MAT & VisualVM. Both tools allow ana-

lyzing hprof -files. Eclipse Memory Analyzer (MAT ) allows to explore

the object graph, find memory leaks, and offers a search engine

which processes Open Query Language (OQL) statements [2]. Visu-
alVM further allows loading application snapshots or core dumps

generated by VM hypervisor software. In my opinion, VisualVM is

the more intuitive program and it also seems to find more relations

between objects than MAT.

5
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/jmap.html
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Figure 4: Information provided by VisualVM on a hprof -file

Figure 5: Webserver of the JHAT utility with a query result

The screenshot in figure 4 shows the main window of the tool.

All classes which were found in the hprof -file are listed, for example

boolean, byte or the custom class TestObject. When expanding

the class, the instances, references, and fields including the actual

values are shown. Further, information about the number of ele-

ments and their size is shown.

Still, these graphical tools only allow manual searching of objects

and no automatic processing of files. Hence, these tools are useful

to get a first insight on the target application. For a more automated

reconstruction, further tools are needed.

4.1.3 JHAT. Another tool suitable for browsing allocated objects

in hprof -files is the Java Heap Analysis Tool (JHAT )
6
. Like JMAP,

it is shipped with the JDK and is also considered experimental. It

parses a hprof -file and then launches a webserver on which one

could browse the object topology found in a heap snapshot.

One feature of JHAT is the ability to parse OQL queries, which

will be used in the next subsection. Figure 5 shows the webserver

started by JHAT and the result of executing an OQL statement.

6
https://docs.oracle.com/javase/7/docs/technotes/tools/share/jhat.html

With the tool JHAT, it is possible to retrieve the variable names

defined in a class as well as the static fields. Also, once could query

class instances and extract the corresponding values.

4.2 Browse Java Heap with OQL
As stated, JHAT offers the ability to process OQL statements. OQL

is similar to SQL but bases on the JavaScript expression language.

It further allows accessing an object’s fields with the natural syntax

obj.field_name and array[index].
7

Before being able to recreate object instances, the respective class

structure must be examined. To achieve this, JHAT provides the

query-method heap.classes(). It returns an enumeration of all

class names found in the heap — including platform classes which

aren’t of any interest. To select the classes of interest, manual

filtering is conducted.

Based on the fully qualified class name, one could find further

information about its content with the query

select heap.findClass("com.foo.Example"). By extending the

query, one could determine the following properties:

• fields: An array containing the member variables:

– name: variable name

– signature: the signature of the variable (e.g. I for Integer,

or L for all kinds of arrays - including strings)

• statics: name, value pairs for static variables

• name: name of the class

In the next step, the actual instances of found classes are retrieved

with the query select objectid(s) from com.foo.Example s.

Each of the previously found fields for the corresponding class

can then be queried. Before accessing the fields, it is necessary

to determine the data type. If the target is a primitive type, the

assigned value can be accessed directly. If it is an array, each field

recursively has to be accessed. When the target is a non-primitive

object, only the instance ID can be obtained.

4.3 Automating Object Reconstruction
In order to automate this command sequence, I decided to build

a small Python script which sends queries to the webserver and

processes the responses. One example method to determine the

value of a variable in an object instance can be found in figure 6.

The check on the length of the field yields the difference between a

singular variable and a respective array. Unfortunately, this distinc-

tion cannot be done with the signature property, as it indicates all

kinds of arrays (including Strings) with L. The recursive call allows

traversing multidimensional arrays.

To generate an output, JHAT must be running with the desired

hprof -file. Then a call of the script will produce an output similar

to the excerpt in figure 7.

As can be seen, all instances and most of the respective vari-

ables including the actual values could be retrieved. Only the byte-

variable couldn’t be detected. JHAT seems to be unable to receive

the value as a java.lang.reflect.InvocationTargetException is thrown

upon accessing this field.

7
http://cr.openjdk.java.net/~sundar/8022483/webrev.01/raw_files/new/src/share/

classes/com/sun/tools/hat/resources/oqlhelp.html
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d e f p a r s e V a r i a b l e ( obj ID , var ) :

r e s u l t = [ ]

a r r = [ ]

l e n g t h = p a r s e T a b l e ( getHTML ( " heap . f i n d O b j e c t ( " +

↩→ ob j ID + " ) . " + var [ 0 ] + " . l e n g t h " ) )

i f ( l e n g t h [ 0 ] == " n u l l " ) : # S t r i n g or I n t e g e r

r e s u l t = p a r s e T a b l e ( getHTML ( " heap . f i n d O b j e c t ( " +

↩→ ob j ID + " ) . " + var [ 0 ] + " . t o S t r i n g ( ) " ) )

p r i n t ( s t r ( var [ 0 ] ) + " ␣ has ␣ v a l u e ␣ " + s t r ( r e s u l t

↩→ [ 0 ] ) )

e l s e : # a c t u a l Array with v a l u e s

f o r i i n range ( i n t ( l e n g t h [ 0 ] ) ) :

r e s u l t = p a r s e V a r i a b l e ( obj ID , [ var [ 0 ] + " [ " +

↩→ s t r ( i ) + " ] " , " L " ] )

r e t u r n r e s u l t

Figure 6: Method to query data on variables from the JHAT
webserver

$ python ParseJHAT . py

. . .

C l a s s com . f r i d . O t h e r O b j e c t − I n s t a n c e 0 x f 8 c 6 1 4 7 0

a has v a l u e 8

b has v a l u e 9

. . .

C l a s s com . f r i d . T e s t O b j e c t − I n s t a n c e 0 x f 8 c 5 f 6 6 8

p u b l i c S t r i n g : " P u b l i c ␣ s t r i n g ␣ i n ␣ the ␣ t e s t o b j e c t "

p r i v a t e S t r i n g : " P r i v a t e ␣ s t r i n g ␣ i n ␣ the ␣ t e s t o b j e c t "

p r o t e c t e d S t r i n g : " P r o t e c t e d ␣ s t r i n g ␣ i n ␣ the ␣ t e s t o b j e c t "

p u b l i c S t r i n g A r r a y [ 0 ] : " P u b l i c ␣ s t a t i c ␣ s t r i n g ␣ a r r a y ␣ from ␣

↩→ main ␣ #1 "

twoDimIntArray [ 0 ] [ 0 ] : " 0 "

twoDimIntArray [ 0 ] [ 1 ] : " 1 "

. . .

twoDimIntArray [ 2 ] [ 1 ] : " 3 "

twoDimIntArray [ 2 ] [ 2 ] : " 4 "

p u b l i c I n t : " 7 "

p u b l i c C h a r : " x "

p u b l i c B o o l : " t r u e "

Cant decode V a r i a b l e p u b l i c B y t e

p u b l i c D o u b l e : " 1 . 2 3 4 "

p u b l i c O t h e r O b j e c t : " com . f r i d . OtherOb jec t@0xf8c61470 "

p u b l i c F i n a l S t r i n g : " P u b l i c ␣ f i n a l ␣ s t r i n g ␣ p r e s e t ␣ i n s i d e ␣

↩→ T e s t O b j e c t "

Figure 7: Call & output extract of the script ParseJHAT.py

When parsing non-primitive objects like publicOtherObject, only

the class name and ID of the object is given. However, the instance

of this object is parsed as well in the first lines of figure 7.

5 RELATEDWORK
In this section some results of related research are presented. Chap-

ter 5.1 compares the ability to reproduce Java artifacts on different

OS. Afterwards, two publications investigating memory forensic

approaches on Android systems are summarized in chapter 5.2 and

chapter 5.3.

5.1 Exploring RAM Artifacts of Java Programs
Al-Sharif et al. investigated in the paper ’Live Forensics of Soft-

ware Attacks on Cyber Physical Systems’ which remnants could

be found in RAM dumps of VMs running Java programs [10]. One

major aspect of their work was to test the same Java program on

the operating systems Windows, Mac OS and Linux Fedora in dif-

ferent scenarios. These scenarios included stopping the program,

terminating the JVM and explicitly invoking the garbage collection.

The experiment performs unstructured analysis on bit-by-bit

copies of the memory. Examination is elaborated by searching the

dumps for string literals that also occur in the source code of the

running program. Besides the source code, no knowledge about the

OS nor the used Java version is assumed.

The authors found that variable values are more likely to be

found in the Windows dumps than in the ones generated on UNIX-

based operating systems like Linux or Mac OS. As the same Java

versions were used, this effect is attributed to the different imple-

mentation of the JRE (including the JVM) on each platform. Further,

they discovered that objects could even be restored after garbage

collection was explicitly invoked or the software was stopped. This

shows that the main memory may contain important information

for forensic experts, even when the action of interest happened

earlier in time.

5.2 Analysis of Android Dumps
The student research paper ’Android Memory Dump Analysis’ de-

scribes the acquisition, the conversion, and memory dump analysis

of popular Android applications [4]. Acquisition and conversion of

the dump file is specific to the Android system and therefore will

be skipped here. The analysis was conducted using the program

Eclipse Memory Analyzer (MAT ) which analyzes binary formatted

heap dumps (hprof -files). Its feature to process OQL statements

was used by Leppert to find all instances of the class String in an

application’s dump and look for regular expressions/strings of in-

terest. This analysis resulted in the extraction of usernames and

email-addresses of the Facebook app and the inbox content of the

GoogleMail application. The increasing spread of smartphones and

the finding of sensitive data on them stresses the importance of

including memory forensics in investigations.

5.3 Live Memory Forensics with Volatility
Macht built his diploma thesis ’Live Memory Forensics on Android

with Volatility’ on top of the work done by Leppert [4] [7]. His

aim is to step away from the unstructured analysis of text-literals

to a structured approach. The basis for his work is the Volatility
framework.

In the further thesis, Macht creates Volatility plugins for the anal-

ysis of Android applications. The plugin functionality encompass

for example the reading of emails from the K9-Mail application or

the accessing of chat conversations from WhatsApp. In comparison

to the results by Leppert, Machts outcomes are highly structured

and allow further insights than the simple String results provided

by the earlier work.

6 EVALUATION
The approach using hprof -files and JHAT to recreate Java objects

was shown to be successful. Variable names and values of almost

all types could be retrieved.

6



When comparing the presented approach with unstructured

analysis, the reconstruction seems more promising than the un-

structured analysis as additional information (the name of the vari-

able containing the value) is available. This fact allows a quicker

manual browsing of the extracted values — especially when a pro-

gram is repeatedly assessed and the important variable names are

already known.

However, it doesn’t unveil the complete underlying structure

like the usage of Volatility plugins does. When applying the pre-

sented approach, the meaning of the results still have to be assessed

manually. While this manual work is a downside, the presented

approach is way more generic. While a new Volatility plugin may

be created for each version of the target application, the presented

approach barely is impacted by the underlying structure and could

easily be transferred to new applications.

7 CONCLUSION
Concluding, one could record that the reconstruction of Java objects

on hprof -files can be achieved with little effort. JHAT allows to

access all objects of interest — either manually or with automated

requests to the webserver. Testing different variable characteristics

shows, that the access modifiers don’t affect the reconstruction

ability. The only data type with limited results is the byte data type.

One remaining issue is the generation of suitable core files from

remote machines. The approach using Volatiltiy fails as the output

consists of separate dumps of memory regions — JMAP requires

one continuous dump file. Attempting to attach GDB to the remote

machine also failed as the dump command is unsupported. Feasible

solutions to acquire core dumps were conducted on the target

machine itself: GDB and crash dumps (using ulimit) both produced

appropriate dumps.

Another challenge is the conversion of the generated core dump

to the hprof file format. The problematic issue is the dependency

on the tool JMAP which transforms core dumps into the desired

file format. This tool is considered experimental and lacks proper

documentation which complicates the use of it. Despite these un-

certainties, the presented approach produced useful results.

7.1 Restrictions
Results presented in this paper underlay some restrictions. Analy-

sis was conducted on machines running Java 8. On later versions

the basic proceeding should be applicable, but parts like the refer-

enced Java tools may change. In Java 9 for example, Oracle merged

the analysis tools into the jhsdb utility. This merger may require

changes to the shown approach.

Also the Java program under investigation is simply structured.

More complex programs which are in use on productive systems

may deliver lots of variables which results in extensive manual

work.

7.2 Further Research Questions
As this paper failed to actually reconstruct Java applications on

remote machines, this should be the primary focus of further re-

search. Especially the combination of the numerous files generated

by Volatility into one coherent ELF-file seems pursuable. Besides

the already mentioned tools, the LIEF-library
8

and PWNtools 9

incorporate some kind of ability to work with ELF-files. Due to

time constraints, these weren’t assessed in this paper.

Another possible research topic is the impact of garbage collec-

tion (GC) on the ability to reconstruct objects. GC improves runtime

performance by sweeping memory of dead objects when memory is

exhausted. Because GC is only invoked once memory is exhausted

and not when objects die, its possible for forensic experts to restore

latent information [9]. Research should assess the extent to which

object reconstruction can be applied on dead objects.
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